La formation Écologie industrielle et territoriale permet d’acquérir des compétences spécifiques dans les domaines de l’ingénierie des systèmes énergétiques, en particulier des énergies renouvelables ; du traitement des effluents et rejets liquides ou gazeux ; de l’efficacité énergétique et de la maîtrise de l’empreinte environnementale des activités industrielles tout au long du cycle de vie.
L’objectif de cette formation est de diplômer des ingénieurs en écologie industrielle en leur permettant d’assurer des missions d’ingénierie inhérentes aux différentes phases de création, de développement ou d’exploitation de sites industriels, de zones d’activités ou de quartiers intégrés. Les objectifs de ces missions d’ingénierie sont de minimiser et d’optimiser l’usage d’énergie et de ressources naturelles, de gérer et de minimiser les rejets et effluents solides, liquides ou gazeux, notamment en créant des synergies d’échanges entre acteurs du territoire dans les domaines :
• de l’ingénierie des systèmes énergétiques, en particulier des énergies renouvelables ;
• du traitement des effluents et rejets liquides, gazeux et solides ;
• de la réduction et de la maîtrise de l’empreinte environnementale des activités industrielles tout au long du cycle de vie de ces activités ;
• de la création, du développement, de l’animation de réseaux d’échanges, de synergies, afin de minimiser aussi bien les consommations de ressources que les rejets fatals.
Archives
Ingénieur en énergétique – Territoires et hydrogène
Dans un contexte de société en transition dont le but est d’enrayer les perturbations climatiques dues aux activités anthropiques, la production responsable d’énergie, l’optimisation et la maîtrise de la consommation énergétique et l’innovation sont au cœur des préoccupations de nombreux domaines d’activité. La formation d’ingénieur en énergétique, par apprentissage sur trois ans, a pour objectif de former des ingénieurs généralistes du secteur de l’énergie dont les compétences répondent directement aux besoins opérationnels des entreprises, organisations et collectivités en matière énergétique. Le parcours atypique, dispensé au Cnam de La Roche-sur-Yon, dote ces ingénieurs de la connaissance du fonctionnement des collectivités territoriales et de l’écosystème hydrogène, particulièrement développé en Vendée.
Énergie
L’Université de Paris (ex-Paris-Diderot) a ouvert à la rentrée 2019 un master 1 approches sociales des enjeux énergétiques (ASE2) afin de préparer les étudiants issus des sciences humaines et sociales à son master 2 énergie, écologie, société (E2S), existant depuis 2014. Le master énergie ainsi créé vise à répondre à la demande des entreprises, administrations et structures associatives qui cherchent des cadres capables d’y naviguer en ayant à la fois une compréhension des enjeux techniques et une capacité à analyser les éléments sociaux qui déterminent les questions énergétiques.
Environnement
Ce master de l’université de Cergy se décline en M2 selon 4 parcours_: écoconception et gestion des déchets_; écoconstruction_; RSE, communication et environnement_; géosciences pour l’énergie. Le M1 est partiellement commun aux quatre parcours et comprend notamment 43 heures d’enseignement sur la thermodynamique et les énergies renouvelables. En M2, le parcours écoconception et _gestion des déchets inclut en plus un module sur la gestion de l’énergie (35 heures) et la gestion de l’eau (35 heures), tandis que celui sur l’écoconstruction creuse le sujet des énergies et de la thermique du bâtiment pendant 61 heures. Le parcours géosciences pour l’énergie a quant à lui été créé en 2019 et vise à former les étudiants aux nouveaux usages du sous-sol comme la géothermie (60 heures) et le géostockage (58 heures), pouvant servir à stocker en sous-sol de l’énergie thermique ou simplement des fluides. Les cours de cette spécialité sont donnés en grande partie en anglais et comprennent une partie modélisation, du travail en laboratoire et des recherches sur le terrain. Les enseignements des trois autres parcours sont complétés par des séminaires, des visites de sites et la participation à des salons. Dans chacune des spécialités, deux tiers des enseignements sont assurés par des professionnels. Le master est ouvert à la formation continue pour tout (formation diplômante de niveau master) ou partie (attestation de formation délivrée pour chaque unité d’enseignement suivie).
Gestion et intégration de l’efficacité énergétique et des énergies renouvelables (IB-GI3ER)
Depuis la rentrée 2018, le mode d’enseignement de ce master a évolué_: 20_% du volume horaire total de la formation (M1 et M2) se font désormais selon un mode d’apprentissage par projets. Ceux-ci impliquent l’équipe pédagogique du master (enseignants et enseignants-chercheurs) ainsi que des partenaires professionnels du secteur du bâtiment et de l’énergie (entreprises de réalisation, bureaux d’études thermiques, bureaux de contrôle, fournisseurs d’équipements, de matériaux et d’énergie, etc.). Les étudiants ont toujours l’occasion d’apprendre à concevoir, à améliorer et à superviser les étapes relatives à la construction ou à la réhabilitation des bâtiments à travers les différents enseignements abordés dans ce master (dimensionnement des équipements et des installations, modélisation et optimisation des enveloppes des bâtiments et des systèmes énergétiques, conception et optimisation des systèmes de gestion technique centralisée, qualité des ambiances intérieures…). Les systèmes actifs (énergies renouvelables, gestion technique des bâtiments) et passifs (bâtiments passifs, transferts, enveloppes) y sont traités.
Des enseignements transverses portent sur la transition écologique et l’évaluation environnementale des bâtiments, les outils pour l’ingénieur (communication, gestion de projets, outils numériques…). Des notions de BIM appliquées à la gestion et à l’économie de projet sont abordées dès le M1 et 66 heures d’enseignement sont dédiées aux énergies renouvelables lors de la deuxième année (géothermie, biomasse, photovoltaïque et systèmes solaires thermiques). La formation est accessible après une formation en énergétique abordant des notions de thermique du bâtiment, donc après une licence en génie civil, une licence en sciences de l’ingénieur ou éventuellement dans un autre domaine qui s’apparente à la mention.
Énergies et systèmes électriques
L’école Junia-HEI (Hautes Études d’ingénieur) propose une formation d’ingénieur généraliste avec un cursus en énergies et systèmes électriques. Au programme_: un socle généraliste (60_% des enseignements) abordant mathématiques, électricité, mécanique, management, anglais, etc., et des cours de spécialisation (40_% des enseignements) tels que les modules moyens de production d’énergie électrique classique et d’énergie renouvelable, les réseaux de distribution de l’énergie électrique, ou la supervision des systèmes et infrastructures communicantes. Ouverte aux étudiants titulaires d’un BTS/BUT, d’une licence 2 ou 3 ou d’un master 1, la formation se fait en apprentissage et combine les interventions des enseignants-chercheurs avec celles d’ingénieurs en activité_; elle comprend également une initiation à la recherche et à l’innovation. Les entreprises partenaires sont_: RTE, Eiffage énergie systèmes, Vinci énergies France Nord, Bouygues énergies & services, Satelec, Legrand, Ramery énergies…
Ingénieur bâtiment écoconstruction énergie
Sur le campus de Savoie Technolac, l’école d’ingénieurs Polytech Annecy-Chambéry délivre une formation multidisciplinaire qui s’appuie sur une expérience de plus de vingt ans dans le domaine de l’ingénierie du bâtiment et des énergies renouvelables, et sur un important tissu régional de laboratoires, d’industriels et de professionnels impliqués dans le secteur du bâtiment et de l’énergie comme l’Institut national de l’énergie solaire.
Énergie et environnement
L’objectif de cette majeure est de former des ingénieurs flexibles et adaptables, aptes à résoudre les nouvelles problématiques industrielles, en lien avec la transition écologique. Un accent particulier est porté sur la place de la transformation numérique dans cette transition écologique. À l’issue de cette majeure, les diplômés acquièrent un bagage de compétences scientifiques, techniques et managériales basées sur_:
• une approche industrielle des modes et procédés de production, et des systèmes énergétiques ;
• les enjeux des réseaux de transport et de distribution électrique, hydraulique et gaz ;
• les aspects politiques, économiques, géopolitiques et réglementaires de l’énergie et de l’environnement ;
• les problématiques de gestion des ressources minérales et énergétiques, depuis l’extraction jusqu’à l’exploitation et la production industrielle en passant par l’écologie industrielle, l’analyse de cycle de vie et les techniques de valorisation matière et énergétique.
Ingénierie et architecture durable
L’objectif de cette majeure est de former des ingénieurs généralistes capables de concevoir des bâtiments et des tissus urbains en utilisant de façon créative les nouvelles technologies et en intégrant les aspects de durabilité. C’est une formation multidisciplinaire qui permet aux ingénieurs d’avoir un regard global avec des compétences transversales : efficacité énergétique, structures de bâtiments, confort et aménagement urbain, permettant la conception de bâtiments et de villes pour un futur durable dans le respect de la réglementation en vigueur, tout en étant en harmonie avec l’environnement et en assurant un niveau de confort optimal.
Économie de l’environnement, de l’énergie et du transport (EEET)
Ce master est porté par plusieurs établissements_: l’université de Paris-Saclay (au sein de laquelle le master implique AgroParisTech, CentraleSupélec, l’Institut national des sciences et techniques du nucléaire), l’université de Paris-Nanterre, l’École nationale supérieure du pétrole et des moteurs (IFP-School), l’École des ponts ParisTech en partenariat avec l’École des mines ParisTech. Il se décline en M2 selon cinq parcours distincts, tous ouverts à l’apprentissage_: économie de l’énergie_; économie de l’environnement et du développement durable_; modélisation prospective_: économie, énergie, environnement_; économie de l’alimentation durable_; économie des transports et des mobilités durables. Le parcours de master 2 économie de l’énergie propose une formation qui s’articule tout au long de l’année entre théorie et pratique, cycles de conférences et visites, ce qui permet aux étudiants d’être rapidement opérationnels.
Les compétences acquises à l’issue de la formation sont les suivantes_: analyser les marchés de l’énergie et les filières énergétiques ainsi que les aspects technologiques_; réaliser et interpréter des études prospectives_; développer une méthode d’analyse multicritère dans l’élaboration des choix stratégiques d’intervention_; savoir mettre en pratique les outils de gestion de projets et de gestion de risques_; élaborer des business plans pour étudier la rentabilité et le financement de projets_; organiser la coordination des acteurs de manière à rendre opérationnelles des solutions proposées_; modéliser et quantifier un phénomène économique_; comprendre les mécanismes et institutions à l’œuvre dans les politiques publiques et les stratégies de négociation. Les cours ont lieu pour la partie économie de l’énergie à l’IFP-School (Rueil-Malmaison) et à l’INSTN (Saclay), pour le M1 à l’Université de Paris-Nanterre et, pour les autres parcours de M2, à Palaiseau, sur le campus Université Paris-Saclay (Paris).